Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Valve interstitial cell shape modulates cell contractility independent of cell phenotype.

Valve interstitial cells are dispersed throughout the heart valve and play an important role in maintaining its integrity, function, and phenotype. While prior studies have detailed the role of external mechanical and biological factors in the function of the interstitial cell, the role of cell shape in regulating contractile function, in the context of normal and diseased phenotypes, is not well understood. Thus, the aim of this study was to elucidate the link between cell shape, phenotype, and acute functional contractile output. Valve interstitial cell monolayers with defined cellular shapes were engineered via constraining cells to micropatterned protein lines (10, 20, 40, 60 or 80µm wide). Samples were cultured in either normal or osteogenic medium. Cellular shape and architecture were quantified via fluorescent imaging techniques. Cellular contractility was quantified using a valve thin film assay and phenotype analyzed via western blotting, zymography, and qRT-PCR. In all pattern widths, cells were highly aligned, with maximum cell and nuclear elongation occurring for the 10μm pattern width. Cellular contractility was highest for the most elongated cells, but was also increased in cells on the widest pattern (80μm) that also had increased CX43 expression, suggesting a role for both elongated shape and increased cell-cell contact in regulating contractility. Cells cultured in osteogenic medium had greater expression of smooth muscle markers and correspondingly increased contractile stress responses. Cell phenotype did not significantly correlate with altered cell shape, suggesting that cellular shape plays a significant role in the regulation of valve contractile function independent of phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app