Add like
Add dislike
Add to saved papers

Simulation of water impregnation through vertically aligned CNT forests using a molecular dynamics method.

Scientific Reports 2016 August 27
The flow rate of water through carbon nanotube (CNT) membranes is considerably large. Hence, CNT membranes can be used in nanofluidic applications. In this work, we performed a molecular dynamics (MD) simulation of the introduction of water into CNTs in the CNT membranes, especially in vertically aligned CNT forests. The results showed that the Knudsen number (Kn) increased with an increasing volume fraction of CNT (VC) and was greater than 10(-3) for each VC. Beyond this value, the flow became a slip flow. Further, the permeability increased as VC increased in the actual state calculated by the MD simulation, whereas the permeability in the no-slip state predicted by the Hagen-Poiseuille relationship decreased. Thus, a clear divergence in the permeability trend existed between the states. Finally, the flow enhancement ranged from 0.1 to 23,800, and the results show that water easily permeates as VC increases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app