Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ryanodine-sensitive intracellular Ca 2+ channels are involved in the output from the SCN circadian clock.

The suprachiasmatic nuclei (SCN) contain the major circadian clock responsible for generation of circadian rhythms in mammals. The time measured by the molecular circadian clock must eventually be translated into a neuronal firing rate pattern to transmit a meaningful signal to other tissues and organs in the animal. Previous observations suggest that circadian modulation of ryanodine receptors (RyR) is a key element of the output pathway from the molecular circadian clock. To directly test this hypothesis, we studied the effects of RyR activation and inhibition on real time expression of PERIOD2::LUCIFERASE, intracellular calcium levels and spontaneous firing frequency in mouse SCN neurons. Furthermore, we determined whether the RyR-2 mRNA is expressed with a daily variation in SCN neurons. We provide evidence that pharmacological manipulation of RyR in mice SCN neurons alters the free [Ca2+ ]i in the cytoplasm and the spontaneous firing without affecting the molecular clock mechanism. Our data also show a daily variation in RyR-2 mRNA from single mouse SCN neurons with highest levels during the day. Together, these results confirm the hypothesis that RyR-2 is a key element of the circadian clock output from SCN neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app