Add like
Add dislike
Add to saved papers

Capsaicin-Sensitive Sensory Nerves Mediate the Cellular and Microvascular Effects of H2S via TRPA1 Receptor Activation and Neuropeptide Release.

It is supposed that TRPA1 receptor can be activated by hydrogen sulphide (H2S). Here, we have investigated the role of TRPA1 receptor in H2S-induced [Ca(2+)]i increase in trigeminal ganglia (TRG) neurons, and the involvement of capsaicin-sensitive sensory nerves in H2S-evoked cutaneous vasodilatation. [Ca(2+)]i was measured with ratiometric technique on TRG neurons of TRPA1(+/+) and TRPA1(-/-) mice after NaHS, Na2S, allylisothiocyanate (AITC) or KCl treatment. Microcirculatory changes in the ear were detected by laser Doppler imaging in response to topical NaHS, AITC, NaOH, NaSO3 or NaCl. Mice were either treated with resiniferatoxin (RTX), or CGRP antagonist BIBN4096, or NK1 receptor antagonist CP99994, or K(+) ATP channel blocker glibenclamide. Alpha-CGRP(-/-) and NK1 (-/-) mice were also investigated. NaHS and Na2S increased [Ca(2+)]i in TRG neurons derived from TRPA(+/+) but not from TRPA1(-/-) mice. NaHS increased cutaneous blood flow, while NaOH, NaSO3 and NaCl did not cause significant changes. NaHS-induced vasodilatation was reduced in RTX-treated animals, as well as by pre-treatment with BIBN4096 or CP99994 alone or in combination. NaHS-induced vasodilatation was significantly smaller in alpha-CGRP(-/-) or NK1 (-/-) mice compared to wild-types. H2S activates capsaicin-sensitive sensory nerves through TRPA1 receptors and the resultant vasodilatation is mediated by the release of vasoactive sensory neuropeptides CGRP and substance P.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app