Add like
Add dislike
Add to saved papers

The kinetics of damage-associated molecular patterns (DAMPs) and toll-like receptors during thioacetamide-induced acute liver injury in rats.

Drug-induced liver injury (DILI) is a common problem in human medicine and it is a major reason to withdraw marketed drugs. However, the mechanism of DILI is still less known. Damage-associated molecular patterns (DAMPs), such as high-mobility group boxes (HMGBs), S100 proteins and heat shock proteins (HSPs), are released from injured or necrotic cells, bind to toll-like receptors (TLRs) and modulate inflammatory reactions. Here we investigated the kinetics of DAMPs, TLRs and MHC class II in a rat model of DILI with thioacetamide (TAA). After TAA administration, extensive necrosis was observed on days 1 and 2, followed by infiltration of inflammatory cells on day 3. The levels of serum liver enzymes also peaked on day 1. Expression of HMGB-1, -2 and S100A4 peaked on day 2. TLR-4 was up-regulated on day 3. The number of MHC class II-positive macrophages increased until day 2. These results suggest that HMGB-1, -2 and S100A4 are associated with hepatocellular necrosis and that DAMPs may activate TLR-4 and MHC class II during TAA-induced liver injury. Our data would contribute to the elucidation of the mechanism of DILI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app