Add like
Add dislike
Add to saved papers

Conformational modulation mediated by polyglutamine expansion in CAG repeat expansion disease-associated proteins.

We have previously reported TR-FRET based immunoassays to detect a conformational change imparted on huntingtin protein by the polyglutamine expansion, which we confirmed using biophysical methodologies. Using these immunoassays, we now report that polyglutamine expansion influences the conformational properties of other polyglutamine disease proteins, exemplified by the androgen receptor (associated with spinal bulbar muscular atrophy) and TATA binding protein (associated with spinocerebellar ataxia 17). Using artificial constructs bearing short or long polyglutamine expansions or a multimerized, unrelated epitope (mimicking the increase in anti-polyglutamine antibody epitopes present in polyglutamine repeats of increasing length) we confirmed that the conformational TR-FRET based immunoassay detects an intrinsic conformational property of polyglutamine repeats. The TR-FRET based conformational immunoassay may represent a rapid, scalable tool to identify modulators of polyglutamine-mediated conformational change in different proteins associated with CAG triplet repeat disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app