Add like
Add dislike
Add to saved papers

Multitask Imidazolium Salt Additives for Innovative Poly(l-lactide) Biomaterials: Morphology Control, Candida spp. Biofilm Inhibition, Human Mesenchymal Stem Cell Biocompatibility, and Skin Tolerance.

Candida species have great ability to colonize and form biofilms on medical devices, causing infections in human hosts. In this study, poly(l-lactide) films with different imidazolium salt (1-n-hexadecyl-3-methylimidazolium chloride (C16MImCl) and 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS)) contents were prepared, using the solvent casting process. Poly(l-lactide)-imidazolium salt films were obtained with different surface morphologies (spherical and directional), and the presence of the imidazolium salt in the surface was confirmed. These films with different concentrations of the imidazolium salts C16MImCl and C16MImMeS presented antibiofilm activity against isolates of Candida tropicalis, Candida parapsilosis, and Candida albicans. The minor antibiofilm concentration assay enabled one to determine that an increasing imidazolium salt content promoted, in general, an increase in the inhibition percentage of biofilm formation. Scanning electron microscopy micrographs confirmed the effective prevention of biofilm formation on the imidazolium salt containing biomaterials. Lower concentrations of the imidazolium salts showed no cytotoxicity, and the poly(l-lactide)-imidazolium salt films presented good cell adhesion and proliferation percentages with human mesenchymal stem cells. Furthermore, no acute microscopic lesions were identified in the histopathological evaluation after contact between the films and pig ear skin. In combination with the good morphological, physicochemical, and mechanical properties, these poly(l-lactide)-based materials with imidazolium salt additives can be considered as promising biomaterials for use in the manufacturing of medical devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app