Add like
Add dislike
Add to saved papers

Proximal femoral growth plate mechanical behavior: Comparison between different developmental stages.

In long bones the growth plate is a cartilaginous structure located between the epiphysis and the diaphysis. This structure regulates longitudinal growth and helps determine the structure of mature bone through the process of endochondral ossification. During human growth the femur's proximal growth plate experiences changes in its morphology that may be related to its mechanical environment. Thus, in order to test this hypothesis from a computational perspective, a finite element analysis on a proximal femur was performed on which we modeled different physeal geometries corresponding to the shapes acquired for this structure in a child between the ages of five to eleven. Results show augmented Von Mises stress values with increasing irregularities in physeal geometry, whereas displacement decreased with increased irregularities in the growth plate's morphology. Such observations suggest that growth plate's shape changes follows a possible mechanical adaptation on imposed loads to sustain a person's increasing body mass during growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app