Controlled Clinical Trial
Journal Article
Add like
Add dislike
Add to saved papers

SPECT/CT study of bronchial deposition of inhaled particles. A human aerosol vaccination model against HPV.

AIMS: Vaccination by aerosol inhalation can be used to efficiently deliver antigen against HPV to mucosal tissue, which is particularly useful in developing countries (simplicity of administration, costs, no need for cold chain). For optimal immunological response, vaccine particles should preferentially be delivered to proximal bronchial airways. We aimed at quantifying the deposition of inhaled particles in central airways and peripheral lung, and to assess administration biosafety. Participants, methods: 20 healthy volunteers (13W/7M, aged 24±4y) performed a 10-min free-breathing inhalation of (99m)Tc-stannous chloride colloid aerosol (450 MBq) in a buffer solution without vaccinal particles using an ultrasonic nebulizer (mass median aerodynamic diameter 4.2 μm) and a double mask inside a biosafety cabinet dedicated to assess environmental particle release. SPECT/CT and whole-body planar scintigraphy were acquired to determine whole-body and regional C/P distribution ratio (central-to-peripheral pulmonary deposition counts). Using a phantom, SPECT sensitivity was calibrated to obtain absolute pulmonary activity deposited by inhalation.

RESULTS: All participants successfully performed the inhalation that was well tolerated (no change in pulmonary peak expiratory flow rate, p = 0.9). It was environmentally safe (no activity released in the biosafety filter.) 1.3±0.6% (range 0.4-2.6%) of the total nebulizer activity was deposited in the lungs with a C/P distribution ratio of 0.40±0.20 (range 0.15-1.14).

CONCLUSION: Quantification and regional distribution of inhaled particles in an aerosolized vaccine model is possible using radioactive particles. This will allow optimizing deposition parameters and determining the particles charge for active-particles vaccination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app