Add like
Add dislike
Add to saved papers

Highly Immunogenic Trimethyl Chitosan-based Delivery System for Intranasal Lipopeptide Vaccines against Group A Streptococcus.

BACKGROUND: Group A streptococcus (GAS) primarily colonizes the mucosal region of the upper respiratory tract, slowly leading to systemic infections. Thus, GAS-specific antibody responses are desirable at mucosal sites for early prevention against GAS colonization.

METHODS: Herein, we developed a potent nanoliposomes-based delivery system for mucosally active lipid core peptide (LCP)-based vaccines.

RESULTS: Trimethyl chitosan (TMC)-coated liposomes that bore a B-cell epitope derived from GAS Mprotein, stimulated potent epitope-specific mucosal and systemic antibody titres after only one boost following intranasal immunization in Swiss outbred mice. The immune responses were durable even at day 139 post-primary immunization.

CONCLUSION: The enhanced vaccine efficacy, lowered dose, and simple and cost-effective process of producing the coated nanoliposomes should be particularly useful in developing potent peptide-based vaccines to prevent infections at the mucosal sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app