Add like
Add dislike
Add to saved papers

Design and expression of peptides with antimicrobial activity against Salmonella typhimurium.

Cellular Microbiology 2017 Februrary
We showed previously that insertion of Synechocystis Δ12 -desaturase in salmonella's membrane alters membrane physical state (MPS), followed by the expression of stress genes causing inability to survive within murine macrophages (MΦ). Recently, we showed that expression of one membrane lipid domain (MLD) of Δ12 -desaturase (ORF200) interferes with salmonella MPS, causing loss of virulence in mice and immunoprotection. Here, we postulate that an α-antimicrobial peptide (α-AMP) intercalates within membrane lipids, and depending on its amino acid sequence, it does so within specific key sensors of MLD. In this study, we choose as target for a putative synthetic AMP, PhoP/PhoQ, a sensor that responds to low Mg2+ concentration. We synthesised a modified DNA fragment coding for an amino acid sequence (NUF) similar to that fragment and expressed it in salmonella typhimurium. We showed that the pattern of gene expression controlled by PhoP/PhoQ highlights dysregulation of pathways involving phospholipids biosynthesis, stress proteins and genes coding for antigens. RNA-Seq of strain expressing ORF200 showed that the pattern of those genes is also altered here. Accumulation of NUF conferred temporary immunoprotection. This represents a powerful procedure to address synthetic α-AMPs to a specific MLD generating live non-virulent bacterial strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app