Add like
Add dislike
Add to saved papers

Detection of respiratory allergies caused by environmental chemical allergen via measures of hyper-activation and degranulation of mast cells in lungs of NC/Nga mice.

Respiratory allergy triggered by exposure to environmental chemical allergen is a serious problem in many Asian countries and has the potential to cause severe health problems. Here, we aimed to elucidate the pathogenic mechanisms of this disease and develop an in vivo detection method for respiratory allergy induced by environmental chemical allergen. Both BALB/c and NC/Nga mice were sensitized topically for 3 weeks and were then subjected to inhalation challenge with pulverized trimellitic anhydride into particles measuring 2-μm in diameter. On the day after the final challenge, all mice were sacrificed, and IgE levels, immunocyte counts, and cytokine levels in the serum, hilar lymph nodes, and bronchoalveolar lavage fluid were measured. We also monitored the expression of genes encoding pro-inflammatory cytokines in the lung. We found that all endpoints were significantly increased in mice of both strains subjected to trimellitic anhydride inhalation as compared with the respective control groups. However, worsening of respiratory status was noted only in NC/Nga mice. Interestingly, type 2 helper T-cell reactions were significantly increased in BALB/c mice compared with that in NC/Nga mice. In contrast, the number of mast cells, levels of mast cell-related cytokine/chemokines, and production of histamine in NC/Nga mice were significantly higher than those in BALB/c mice. Thus, environmental chemical allergen induced respiratory allergy in NC/Nga mice in terms of functional and inflammatory symptoms. Furthermore, mast cells may be involved in the aggravation of airway allergic symptoms induced by environmental chemical allergens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app