Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of Neuropeptide B (NPB), Neuropeptide W (NPW), and Their Receptors in Chickens: Evidence for NPW Being a Novel Inhibitor of Pituitary GH and Prolactin Secretion.

Endocrinology 2016 September
The 2 structurally and functionally related peptides, neuropeptide B (NPB) and neuropeptide W (NPW), together with their receptor(s) (NPBWR1/NPBWR2) constitute the NPB/NPW system, which acts mainly on the central nervous system to regulate many physiological processes in mammals. However, little is known about this NPB/NPW system in nonmammalian vertebrates. In this study, the functionality and expression of this NPB/NPW system and its actions on the pituitary were investigated in chickens. The results showed that: 1) chicken NPB/NPW system comprises an NPB peptide of 28 amino acids (cNPB28), an NPW peptide of 23 or 30 amino acids (cNPW23/cNPW30), and their 2 receptors (cNPBWR1 and cNPBWR2), which are highly homologous to their human counterparts. 2) Using a pGL3-CRE-luciferase reporter system, we demonstrated that cNPBWR2 expressed in Chinese hamster ovary cells can be potently activated by cNPW23 (not cNPB28), and its activation inhibits the intracellular cAMP signaling pathway, whereas cNPBWR1 shows no response to peptide treatment, suggesting a crucial role of cNPBWR2 in mediating cNPW/cNPB actions. 3) Quantitative real-time PCR revealed that cNPW and cNPB are widely expressed in chicken tissues, including hypothalamus, whereas cNPBWR1 and cNPBWR2 are mainly expressed in brain or pituitary. 4) In accordance with abundant cNPBWR2 expression in pituitary, cNPW23 could dose dependently inhibit GH and prolactin secretion induced by GHRH and vasoactive intestinal polypeptide, respectively, in cultured chick pituitary cells, as monitored by Western blotting. Collectively, our data reveal a functional NPB/NPW system in birds and offer the first proof that NPW can act directly on pituitary to inhibit GH/prolactin secretion in vertebrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app