Add like
Add dislike
Add to saved papers

Altered expression of a two-pore domain (K2P) mechano-gated potassium channel TREK-1 in Hirschsprung's disease.

Pediatric Research 2016 November
BACKGROUND: The pathophysiology of Hirschsprung's disease (HSCR) is not fully understood. A significant proportion of patients have persisting bowel symptoms such as constipation, soiling, and enterocolitis despite correctly performed operations. Animal data suggest that stretch-activated 2-pore domain K+ channels play a critical role in the maintenance of intestinal barrier integrity.

METHODS: We investigated TREK-1 protein expression in ganglionic and aganglionic regions of HSCR patients (n = 10) vs. normal control colon (n = 10). Protein distribution was assessed by using immunofluorescence and confocal microscopy. Gene and protein expression were quantified using quantitative real-time polymerase chain reaction, western blot analysis, and densitometry.

RESULTS: Confocal microscopy of the normal colon revealed strong TREK-1 channel expression in the epithelium. TREK-1-positive cells were decreased in aganglionic and ganglionic bowel compared to controls. TREK-1 gene expression levels were significantly decreased in aganglionic and ganglionic bowel compared to controls (P < 0.05). Western blotting revealed decreased TREK-1 protein expression in aganglionic and ganglionic bowel compared to controls.

CONCLUSION: We demonstrate, for the first time, the expression and distribution of TREK-1 channels in the human colon. The decreased TREK-1 expression in the aganglionic and ganglionic bowel observed in HSCR may alter intestinal epithelial barrier function leading to the development of enterocolitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app