Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reduced Bone Density and Cortical Bone Indices in Female Adiponectin-Knockout Mice.

Endocrinology 2016 September
A positive association between fat and bone mass is maintained through a network of signaling molecules. Clinical studies found that the circulating levels of adiponectin, a peptide secreted from adipocytes, are inversely related to visceral fat mass and bone mineral density, and it has been suggested that adiponectin contributes to the coupling between fat and bone. Our study tested the hypothesis that adiponectin affects bone tissue by comparing the bone phenotype of wild-type and adiponectin-knockout (APN-KO) female mice between the ages of 8-37 weeks. Using a longitudinal study design, we determined body composition and bone density using dual energy x-ray absorptiometry. In parallel, groups of animals were killed at different ages and bone properties were analyzed by microcomputed tomography, dynamic histomorphometry, 3-point bending test, nanoindentation, and computational modelling. APN-KO mice had reduced body fat and decreased whole-skeleton bone mineral density. Microcomputed tomography analysis identified reduced cortical area fraction and average cortical thickness in APN-KO mice in all the age groups and reduced trabecular bone volume fraction only in young APN-KO mice. There were no major differences in bone strength and material properties between the 2 groups. Taken together, our results demonstrate a positive effect of adiponectin on bone geometry and density in our mouse model. Assuming adiponectin has similar effects in humans, the low circulating levels of adiponectin associated with increased fat mass are unlikely to contribute to the parallel increase in bone mass. Therefore, adiponectin does not appear to play a role in the coupling between fat and bone tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app