Add like
Add dislike
Add to saved papers

Concomitant aneurysm detection in an intracranial dolichoectasia mouse model using a MicroFil polymer perfusion technique.

OBJECTIVE: To assess the feasibility of using MicroFil polymer perfusion to detect concomitant saccular aneurysms in an intracranial arterial dolichoectasia (IADE) model in mice, and to report detailed histomorphometric features of these aneurysms.

MATERIALS AND METHODS: IADE models were created in C57/BL6 mice via microsurgical injection of 25 mU elastase into the cisterna magna. The cerebral vasculature was perfused with MicroFil polymer and harvested at 1, 3, and 7 days, and 2 and 4 weeks (n=8 for each group). IADE was defined by a tortuosity index >10 combined with a 25% increase in diameter of the A1 segment of the anterior cerebral artery (ACA), internal carotid artery (ICA), or basilar artery compared with the baseline of controls, which received heat-inactivated elastase. Saccular aneurysm occurrence rate, location, and morphological parameters were investigated using macroscopic and microscopic analysis.

RESULTS: IADE was present in 95% (36/38) of the subjects, with a mortality rate of 5% (2/40). Fifteen concomitant saccular aneurysms were detected in 8 (21%) of the 38 surviving mice, including 6 at the posterior communicating artery, 1 along the ACA, 2 along the anterior communicating artery complex, 3 along the ICA, and 3 along the middle cerebral artery. Rupture was confirmed in two aneurysms. Histological examination indicated that the aneurysms develop via arterial-wall remodelling, which is characterized by internal elastic lamina disruptions and muscular layer discontinuity in the media.

CONCLUSIONS: The proportion of subjects developing saccular aneurysms in addition to IADE in our mouse model is similar to the 15% of patients with IADE who have concomitant saccular aneurysms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app