Add like
Add dislike
Add to saved papers

Larger screw diameter may not guarantee greater pullout strength for headless screws - a biomechanical study.

Headless compression screws (HCSs) are commonly utilized devices for small bone fracture fixation. The Mini-Acutrak 2 and headless reduction (HLR) screws are the newer version types, in which both have fully threaded and variable pitch design. Specifically, the HLR is characterized by two thread runouts to facilitate implantation. With the thread runouts, the holding strength of the screw may be compromised. To the best of our knowledge, no study has examined the pullout force of the global sizes of a HCS. We sought to determine the pullout strength of the HLR and compare the strength of this screw with that of the Mini-Acutrak 2. Synthetic bone blocks with simulated transverse fractures were used to conduct the tests. Four commonly used sizes of the HLR were examined, and one Mini-Acutrak 2 was employed for comparison. Five screws of each size were tested. The pullout force of all screws that were tested in this study ranged from 45.23 to 233.22 N. The results revealed that the pullout force increased as the screw diameter increased. Interestingly, we found that one small screw outperformed the Mini-Acutrak 2, which has a larger diameter. This study provided extensive knowledge regarding the pullout strength of fully threaded HCSs of different sizes. An unexpected finding is that a small screw has higher holding power than a large one because of its increased number of threads. Therefore, we suggest that the thread number should be a critical consideration for the design of size distribution of HCSs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app