Add like
Add dislike
Add to saved papers

Alteration of RhoA Prenylation Ameliorates Cardiac and Vascular Remodeling in Spontaneously Hypertensive Rats.

BACKGROUND: In our previous study, farnesyl pyrophosphate synthase (FPPS) was shown to be increased in spontaneously hypertensive rats (SHR) and in mice with angiotensin-II induced cardiac hypertrophy. Overexpression of FPPS induced cardiac hypertrophy and fibrosis in mice, accompanied by an increase in the synthesis of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). In the present study, we investigated the mechanisms of reversing cardiovascular remodeling in SHR by inhibiting FPPS.

METHODS AND RESULTS: Six-week-old rats were given vehicle or an FPPS inhibitor (alendronate, 100 ug/kg/d) daily for twelve weeks by osmotic mini-pump. The results demonstrated that FPPS inhibition attenuated cardiac hypertrophy and fibrosis in SHR as shown by the heart weight to body weight ratio, echocardiographic parameters, and histological examination. In addition, FPPS inhibition attenuated aortic remodeling as shown by reduced media thickness, media cross-sectional area and collagen of the aorta as well as SBP, DBP, MBP. Furthermore, 12 weeks of alendronate treatment significantly decreased FPP and GGPP levels, RhoA activation and geranylgeranylation in the heart and aorta, all of which were significantly upregulated in SHR compared with normotensive Wistar-Kyoto rats.

CONCLUSION: Taken together, these results indicate that chronic treatment with alendronate decreases the development of cardiac and aortic remodeling, by a pathway which involves inhibition of the geranylgeranylation and activation of RhoA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app