Add like
Add dislike
Add to saved papers

Hemodynamic and metabolic response during dynamic and resistance exercise in different intensities: a cross-sectional study on implications of intensity on safety and symptoms in patients with coronary disease.

Resistance (RE) and aerobic exercise (AE) can promote hemodynamic, physiologic and clinical modifications in coronary artery disease (CAD) patients. The aim of the study is to assess key physiologic and clinical responses during RE at 30% and 60% of 1-RM on a 45° leg press and to compare responses during AE. We evaluated fifteen male subjects with coronary artery disease (60.8±4.7 years) that performed the following tests: (1) incremental AE test on cycle ergometer; (2) 1-RM test on a leg press at 45°; (3) and RE at 30% and 60% of 1-RM for 24 repetitions. Peak cardiac output (CO), heart rate (HR), oxygen consumption (VO2), carbon dioxide production (VCO2) and the minute ventilation (VE, L/min)/VCO2 ration were measured. We found that both AE and RE at 60% of aerobic and resistance capacity elicited similar hemodynamic and ventilatory responses (p>0.05). However, RE at 30% 1-RM showed more attenuated responses of VO2, VE/VCO2, HR and CO when compared with 60% of aerobic and resistance capacity. Interestingly, the number, percentage and the severity of arrhythmias were higher at 60% 1-RM (P<0.05). Our data suggest that high repetition sets of RE at 60% 1-RM appears to result in hemodynamic, ventilatory, and metabolic changes equivalent to those observed during AE at a comparable intensity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app