Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inflammation induced by inhaled lipopolysaccharide depends on particle size in healthy volunteers.

AIMS: In drug development, the anti-inflammatory properties of new molecules in the lung are currently tested using the inhaled lipopolysaccharide (LPS) model. The total and regional lung bioavailability of inhaled particles depends significantly on their size. The objective of the present study was to compare inflammatory responses in healthy volunteers after the inhalation of LPS of varying droplet size.

METHODS: Three nebulizers were characterized by different droplet size distributions [mean mass median aerodynamic diameters: Microcirrus (2.0 μm), MB2 (3.2 μm) and Pari (7.9 μm)]. Participants inhaled three boluses of a 20 μg (technetium 99 m-labelled) solution of LPS, randomly delivered by each nebulizer. We measured the lung deposition of the nebulized LPS by gamma-scintigraphy, while blood and sputum biomarkers were evaluated before and after challenges.

RESULTS: MB2 and Pari achieved greater lung deposition than Microcirrus [171.5 (±72.9) and 217.6 (±97.8) counts pixel-1 , respectively, vs. 67.9 (±20.6) counts pixel-1 ; P < 0.01]. MB2 and Pari caused higher levels of blood C-reactive protein and more total cells and neutrophils in sputum compared with Microcirrus (P < 0.05). C-reactive protein levels correlated positively with lung deposition (P < 0.01).

CONCLUSIONS: Inhalation of large droplets of LPS gave rise to greater lung deposition and induced a more pronounced systemic and bronchial inflammatory response than small droplets. The systemic inflammatory response correlated with lung deposition. NCT01081392.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app