Add like
Add dislike
Add to saved papers

MOF-derived binary mixed metal/metal oxide @carbon nanoporous materials and their novel supercapacitive performances.

Mixed cobalt and manganese oxides embedded in the nanoporous carbon framework (M/MO@C) were synthesized by the direct carbonization of a binary mixed-metal organic framework (CoMn-MOF-74) for the first time. The unique M/MO@C carbon materials maintained the primary morphology of CoMn-MOF-74, and showed a uniform dispersibility of Co, MnO and CoO nanoparticles in the carbon matrix, and therefore greatly increased the conductivity of the M/MO@C materials. A series of M/MO@C samples were tested as the electrode materials for supercapacitors, and a remarkable specific capacitance of 800 F g(-1) was obtained using the M/MO@C-700 sample at a current density of 1 A g(-1) in 6 M KOH electrolyte. Moreover, the M/MO@C sample showed a good cycling stability with a capacitance retention of 85% after 1000 cycles. It is also found that the optimized carbonization temperature is a critical parameter to obtain such a M/MO@C nanoporous carbon framework with the best capacitive performances. The present approach is convenient and reproducible, which could be easily extended to the preparation of other M/MO@C composites with excellent electrochemical performances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app