Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Precision real-time evaluation of bowel perfusion: accuracy of confocal endomicroscopy assessment of stoma in a controlled hemorrhagic shock model.

Surgical Endoscopy 2017 Februrary
BACKGROUND AND AIMS: Confocal laser endomicroscopy (CLE) can provide real-time evaluation of bowel perfusion. We aimed to evaluate CLE perfusion imaging in a hemorrhagic shock model.

MATERIALS AND METHODS: Five pigs were equipped to ensure hemodynamic monitoring. Three ileostomies per animal (total n = 15) were randomly created (T0). Blood was withdrawn targeting a mean arterial pressure of 40 mmHg (shock phase, T1), for 90 min. Infusion of Ringer's lactate was started and continued for 90 min (T2). At the different time points: (a) stomas' mucosa was scanned with CLE; (b) capillary lactates were measured on blood obtained by puncturing stomas' mucosa; and (c) full-thickness stomas' biopsies were sampled for histology, mitochondrial respiratory rate (V 0  = basal and V ADP  = respiratory rate in excess of adenosine diphosphate), and levels of superoxide anion evaluation. Functional capillary density (FCD) was measured using ad hoc software.

RESULTS: Confocal scanning provided consistent and specific imaging of bowel hypoperfusion at T1: vascular hyperpermeability (blurred and enlarged capillaries) and edema (enhanced visualization of the brush border due to increased intercellular spaces and fluorescein leakage). At the end of T2, there was an improved capillary flow. FCD-A index expressed statistically significant correlation with (1) stoma capillary lactates (p = 0.023); (2) systemic capillary lactates (p = 0.031); (3) inflammation pathology score (p = 0.048); (4) central venous pressure (p = 0.0043); and (5) pulmonary artery pressure (p = 0.01). Stoma capillary lactates (mmol/L) were significantly increased at T1 (8.81 ± 4.23; p < 0.0001) and at T2 (4.77 ± 3.13; p < 0.01) when compared to T0 inclusion values (1.86 ± 0.56). V 0 and V ADP (pmol O2 /min/mg tissue) were both significantly decreased at T1 versus T0 (p < 0.007 and p < 0.01, respectively) and recovered by the end of reanimation (T2 vs. T0, p = n.s.). Mean O 2 ·- production (µmol/min/mg/dry tissue) increased at T1 and significantly decreased at T2.

CONCLUSIONS: Confocal laser endomicroscopy (CLE) imaging could identify morphological signs congruent with biochemical markers of bowel perfusion and could be useful for assessment of stomas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app