Add like
Add dislike
Add to saved papers

Mild hypothermia attenuates post-resuscitation brain injury through a V-ATPase mechanism in a rat model of cardiac arrest.

Although therapeutic hypothermia is an effective treatment for post-resuscitation brain injury after cardiac arrest (CA), the underlying mechanism remains unclear. Vacuolar H(+)-ATPase (V-ATPase) plays a key role in cellular adaption to a hypoxic environment. This study sought to evaluate the effect of mild hypothermia on V-ATPase and its involvement in neuroprotection after CA. Male Sprague-Dawley rats were subjected to a 6-min CA, resuscitated successfully, and then assigned to either the normothermia (NT) group or the hypothermia (HT) group. Rats were further divided into 2 subgroups based on the time of euthanasia, either 3 or 24 h after CA (NT-3 h, HT-3 h; NT-24 h, HT-24 h). Mild hypothermia was induced following CA and maintained at 33°C for 2 h. Neurologic deficit scores were used to determine the status of neurological function. Brain specimens were analyzed by TUNEL assay, western blotting, and immunohistochemistry. V-ATPase activity was estimated by subtracting total ATP hydrolysis from the bafilomycin-sensitive activity. Mild hypothermia improved the neurological outcome (HT-24 h: 34.3 ± 16.4 vs NT-24 h: 50.3 ± 17.4) and significantly decreased neurocyte apoptosis 24 h after resuscitation. Mild hypothermia significantly increased V0a1 compared to NT-3 h; V0a1 expression was associated with a decrease in the cleaved caspase 3 expression. These findings suggested that mild hypothermia inhibits CA-induced apoptosis in the hippocampus, which may be associated with reduced V-ATPase impairment. These data provide new insights into the protective effects of hypothermia in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app