Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis.

Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P < 0.05). Moreover, we found significantly higher transcript levels of phosphoenolpyruvate carboxykinase (PEPCK, a key gluconeogenic enzyme) in the kidney cortex from HFD, relative to mice on NCD. The higher level of PEPCK in HFD was confirmed by immunoblotting. However, no significant differences were observed in cortical glucose-6-phosphatase (G6Pase) or fructose-1,6, bisphosphosphatase (FBPase) enzyme transcript levels. Furthermore, we demonstrated insulin inhibited glucose production in hPTC treated with cyclic AMP and dexamethasone (cAMP/DEXA) to stimulate gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P < 0.05), and insulin attenuated this upregulation Furthermore, the effect of insulin on cAMP/DEXA-induced gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P < 0.05). Overall the above data indicate a direct role for IR expression as a determinant of PT-gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app