Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fast Sequences of Non-spatial State Representations in Humans.

Neuron 2016 July 7
Fast internally generated sequences of neural representations are suggested to support learning and online planning. However, these sequences have only been studied in the context of spatial tasks and never in humans. Here, we recorded magnetoencephalography (MEG) while human subjects performed a novel non-spatial reasoning task. The task required selecting paths through a set of six visual objects. We trained pattern classifiers on the MEG activity elicited by direct presentation of the visual objects alone and tested these classifiers on activity recorded during periods when no object was presented. During these object-free periods, the brain spontaneously visited representations of approximately four objects in fast sequences lasting on the order of 120 ms. These sequences followed backward trajectories along the permissible paths in the task. Thus, spontaneous fast sequential representation of states can be measured non-invasively in humans, and these sequences may be a fundamental feature of neural computation across tasks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app