Add like
Add dislike
Add to saved papers

Autophagy in human skin fibroblasts: Comparison between young and aged cells and evaluation of its cellular rhythm and response to Ultraviolet A radiation.

Autophagic mechanisms play critical roles in cell maintenance. Damaged organelles that are not removed by autophagosomes, which act by engulfing and degrading these cellular components, have been linked to various pathologies. Recently, the progression of aging has also been correlated to a compromised autophagic response. Here, we report for the first time a significant reduction in autophagic levels in synchronized aged normal human skin fibroblasts as compared to young fibroblasts. We measured a 77.9% reduction in autophagy as determined by reverse transcription-polymerase chain reaction for LC3B expression, a microtubule-associated protein correlated to late stage autophagosome formation. In addition, we visualized these same changes by immunocytofluorescence with antibodies directed against LC3B. By harvesting synchronized, as well as unsynchronized cells over time, we were also able to measure for the first time a nighttime peak in autophagy that was present in young but absent in aged fibroblasts. Finally, since human skin is constantly subjected to environmentally induced oxidative stress from sunlight, we exposed fibroblasts to 10 J/cm2 ultraviolet A and found, in good agreement with current literature, not only that irradiation could partially reactivate autophagy in the aged cells, but also that this increase was phase shifted earlier from its endogenous temporal pattern because of its loss of synchronization with circadian rhythm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app