Add like
Add dislike
Add to saved papers

RbdB, a Rhomboid Protease Critical for SREBP Activation and Virulence in Aspergillus fumigatus.

MSphere 2016 March
SREBP transcription factors play a critical role in fungal virulence; however, the mechanisms of sterol regulatory element binding protein (SREBP) activation in pathogenic fungi remains ill-defined. Screening of the Neurospora crassa whole-genome deletion collection for genes involved in hypoxia responses identified a gene for an uncharacterized rhomboid protease homolog, rbdB, required for growth under hypoxic conditions. Loss of rbdB in Aspergillus fumigatus also inhibited growth under hypoxic conditions. In addition, the A. fumigatus ΔrbdB strain also displayed phenotypes consistent with defective SREBP activity, including increased azole drug susceptibility, reduced siderophore production, and full loss of virulence. Expression of the basic helix-loop-helix (bHLH) DNA binding domain of the SREBP SrbA in ΔrbdB restored all of the phenotypes linking RdbB activity with SrbA function. Furthermore, the N-terminal domain of SrbA containing the bHLH DNA binding region was absent from ΔrbdB under inducing conditions, suggesting that RbdB regulates the protein levels of this important transcription factor. As SrbA controls clinically relevant aspects of fungal pathobiology in A. fumigatus, understanding the mechanisms of SrbA activation provides opportunities to target this pathway for therapeutic development. IMPORTANCE Aspergillus fumigatus causes life-threatening infections, and treatment options remain limited. Thus, there is an urgent need to find new therapeutic targets to treat this deadly disease. Previously, we have shown that SREBP transcription factors and their regulatory components are critical for the pathobiology of A. fumigatus. Here we identify a role for RbdB, a rhomboid protease, as an essential component of SREBP activity. Our results indicate that mutants lacking rbdB have growth defects under hypoxic conditions, are hypersusceptible to voriconazole, lack extracellular siderophore production, and fail to cause disease in a murine model of invasive pulmonary aspergillosis. This study increases our understanding of the molecular mechanisms involved in SREBP activation in pathogenic fungi and provides a novel therapeutic target for future development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app