Add like
Add dislike
Add to saved papers

Nogo-p4 Suppresses TrkA Signaling Induced by Low Concentrations of Nerve Growth Factor Through NgR1 in Differentiated PC12 Cells.

BACKGROUND: Regeneration of injured axons in adult mammalian central nervous system (CNS) is not spontaneous. Nogo is a major inhibitory molecule contributing to axon regeneration failure. The molecular mechanisms of Nogo inhibition of axon regeneration are not completely understood. To further investigate the underlying mechanisms, we studied the effects of Nogo-p4, a 25-amino acid core inhibitory fragment of Nogo, on nerve growth factor (NGF)-induced TrkA signaling.

METHODS: NGF-differentiated PC12 cells were used as cell models. The effects of Nogo-p4 on two key components of TrkA signaling, phosphorylated Erk1/2 and Akt, were analyzed by western blot. Co-immunoprecipitation experiments were performed to detect the formation of NgR1/p75 complexes. Neurite growth was quantified by measuring the neurite length.

RESULTS: Nogo-p4 did not significantly affect TrkA signaling induced by 100 ng/ml NGF, but signaling was suppressed when an NGF concentration of 5 ng/ml was used. Further investigation demonstrated that Nogo-p4 affected TrkA signaling in an NGF concentration-dependent manner. Nogo-p4 suppression of TrkA signaling was strong at low (1 and 5 ng/ml), moderate at intermediate (25 ng/ml), but absent at high (50 and 100 ng/ml) NGF concentrations. NEP1-40 attenuated, and NgR1 overexpression enhanced, Nogo-p4 suppression of TrkA signaling induced by low concentrations of NGF. High but not low concentrations of NGF reduced the formation of NgR1/p75 complexes triggered by Nogo-p4. Nogo-p4 strongly inhibited neurite growth induced by low rather than high concentrations of NGF.

CONCLUSION: Nogo-p4 binding with NgR1 suppresses TrkA signaling induced by low concentrations of NGF in differentiated PC12 cells. Suppression of NGF-induced TrkA signaling may be another mechanism by which Nogo inhibits neurite growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app