Add like
Add dislike
Add to saved papers

Astagalus Polysaccharide Attenuates Murine Colitis through Inhibiton of the NLRP3 Inflammasome.

Planta Medica 2017 January
Astragalus polysaccharide is an important bioactive component of Astragalus membranaceus , an herb used in traditional Chinese medicine for treating inflammatory bowel disease. The NOD-like receptor protein 3 inflammasome plays an important role in the pathogenesis of inflammatory bowel disease. However, little is known about the role of NOD-like receptor protein 3 inflammasome in Astragalus polysaccharide-treated mice with experimental colitis. For this study, we investigated the molecular mechanisms that underlie the treatment of inflammatory bowel disease by Astragalus polysaccharide. We show that Astragalus polysaccharide treatment reduces the disease activity index and histological injury scores compared to the colitis model group. Astragalus polysaccharide also effectively inhibited the expression of NOD-like receptor protein 3, apoptotic speck protein containing a c-terminal caspase recruitment domain, caspase-1, interleukin-18, and interleukin-1 β , as shown by quantificational RT-PCR or the enzyme-linked immunosorbent assay. Furthermore, Astragalus polysaccharide treatments produced significant dose-dependent improvements in dextran sulfate sodium-induced experimental colitis. Our data provide the reliable evidence that Astragalus polysaccharide is able to exert a therapeutic effect in dextran sulfate sodium-induced colitis by inhibiting the activation of the NOD-like receptor protein 3 inflammasome, which acts to decrease the production of inflammatory factors such as interleukin-18 and interleukin-1 β .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app