Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.

Programmable clustered regularly interspaced short palindromic repeats (CRISPR) Cpf1 endonucleases are single-RNA-guided (crRNA) enzymes that recognize thymidine-rich protospacer-adjacent motif (PAM) sequences and produce cohesive double-stranded breaks (DSBs). Genome editing with CRISPR-Cpf1 endonucleases could provide an alternative to CRISPR-Cas9 endonucleases, but the determinants of targeting specificity are not well understood. Using mismatched crRNAs we found that Cpf1 could tolerate single or double mismatches in the 3' PAM-distal region, but not in the 5' PAM-proximal region. Genome-wide analysis of cleavage sites in vitro for eight Cpf1 nucleases using Digenome-seq revealed that there were 6 (LbCpf1) and 12 (AsCpf1) cleavage sites per crRNA in the human genome, fewer than are present for Cas9 nucleases (>90). Most Cpf1 off-target cleavage sites did not produce mutations in cells. We found mismatches in either the 3' PAM-distal region or in the PAM sequence of 12 off-target sites that were validated in vivo. Off-target effects were completely abrogated by using preassembled, recombinant Cpf1 ribonucleoproteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app