Journal Article
Review
Add like
Add dislike
Add to saved papers

A ventral root avulsion injury model for neurogenic underactive bladder studies.

Detrusor underactivity (DU) is defined as a contraction of reduced strength and/or duration during bladder emptying and results in incomplete and prolonged bladder emptying. The clinical diagnosis of DU is challenging when present alone or in association with other bladder conditions such as detrusor overactivity, urinary retention, detrusor hyperactivity with impaired contractility, aging, and neurological injuries. Several etiologies may be responsible for DU or the development of an underactive bladder (UAB), but the pathobiology of DU or UAB is not well understood. Therefore, new clinically relevant and interpretable models for studies of UAB are much needed in order to make progress towards new treatments and preventative strategies. Here, we review a neuropathic cause of DU in the form of traumatic injuries to the cauda equina (CE) and conus medullaris (CM) portions of the spinal cord. Lumbosacral ventral root avulsion (VRA) injury models in rats mimic the clinical phenotype of CM/CE injuries. Bilateral VRA injuries result in bladder areflexia, whereas a unilateral lesion results in partial impairment of lower urinary tract and visceromotor reflexes. Surgical re-implantation of avulsed ventral roots into the spinal cord and pharmacological strategies can augment micturition reflexes. The translational research need for the development of a large animal model for UAB studies is also presented, and early studies of lumbosacral VRA injuries in rhesus macaques are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app