JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A method for objectively quantifying propidium iodide exclusion in organotypic hippocampal slice cultures.

BACKGROUND: Organotypic hippocampal slice cultures (OHSCs) are an attractive in vitro model to examine mechanisms of neuronal injury, because the normal hippocampal architecture, function and cellular diversity are mostly preserved. The effects of exposure to excitotoxins such as N-methyl-d-aspartate (NMDA) on cell viability can be determined by propidium iodide (PI) staining.

NEW METHOD: We describe a simple method to objectively quantify cell death in NMDA exposed slice cultures using PI that provides a standardized means of quantifying cell death in hippocampal subfields without the need to induce maximal cell death in each slice. The method employs separation of subfields using simple landmarks and densitometric quantification of PI intensity in 10 template-oriented counting fields.

RESULTS: We show that exposure to increasing concentrations of NMDA results in a dose-dependent increase in PI uptake. Additionally, our method facilitates the comparison of cell death in different hippocampal subfields, such as dentate gyrus, CA1 and CA3. Our results show marked differences of PI uptake in the hippocampal regions with the CA1 area being most sensitive to NMDA-induced injury.

COMPARISON WITH EXISTING METHOD(S): The method provides a standardized format for quantifying PI exclusion in OHSCs that can be applied to cultures of differing shapes and sizes, permits comparisons between hippocampal subfields and does not require induction of maximal cell death.

CONCLUSION: The method of quantifying PI uptake described herein allows for an objective, quantitative and reproducible analysis and comparison of cell death in distinct regions of OHSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app