Add like
Add dislike
Add to saved papers

Mitochondria as therapeutic targets in acute kidney injury.

PURPOSE OF REVIEW: Mitochondria are complex intracellular organelles with a variety of important functions. The kidney tubule is densely packed with mitochondria, and mitochondrial dysfunction is thought to be central to the pathogenesis of acute kidney injury (AKI). Mitochondria therefore represent potential targets for novel therapeutic interventions in AKI.

RECENT FINDINGS: Several mitochondrial targeted approaches have shown promise in recent preclinical studies of AKI, including measures to: reduce oxidative stress within mitochondria; prevent mitochondrial fission and activation of cell death pathways; enhance recycling of damaged mitochondria via autophagy and mitophagy; and accelerate mitochondrial biogenesis postinsult.

SUMMARY: Recent studies show that it is now eminently feasible to pharmacologically manipulate various key aspects of mitochondrial biology in the kidney, and this has much potential for the future treatment of AKI. However, significant hurdles will have to be overcome in the translational pathway for these strategies to successfully migrate to the clinic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app