Add like
Add dislike
Add to saved papers

Bortezomib treatment prevents glomerulosclerosis associated with lupus nephritis in a murine model through suppressive effects on the immune and renin-angiotensin systems.

Modern Rheumatology 2017 January
OBJECTIVE: To clarify the mechanisms underlying lupus nephritis (LN) amelioration following bortezomib treatment.

METHODS: Bortezomib was administered subcutaneously every 3 days to NZB/W F1 mice, and the serum anti-double stranded (ds) deoxyribonucleic acid (DNA) antibody titers and proteinuria levels were measured. The renal samples and the splenocytes were examined histologically or used for real-time quantitative reverse transcription-polymerase chain reaction analysis after 18 weeks of treatment. Serum cytokine and anti-dsDNA antibody levels were measured using flow cytometry and enzyme-linked immunoassays every 3 weeks. Transforming growth factor (TGF)-β, angiotensin II type-1 receptor (AT1R), and type I collagen expression levels in the glomeruli were evaluated using immunohistochemistry.

RESULTS: Bortezomib reduced the serum anti-dsDNA antibody titers and the proteinuria levels. It prevented inflammatory cell infiltrations into and the deposition of immunoglobulin G within the glomeruli. Bortezomib reduced the interferon-γ, interleukin (IL)-4, and IL-10 levels in the serum and the ribonucleic acid expression levels for these cytokines within the splenocytes. Bortezomib prevented type I collagen synthesis by downregulating TGF-β and AT1R expression in the glomeruli.

CONCLUSIONS: Bortezomib exerts multiple immunosuppressive effects and thus ameliorates LN. Furthermore, bortezomib can prevent glomerulosclerosis formation in NZB/W F1 mice through suppressive effects on the renin-angiotensin system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app