Add like
Add dislike
Add to saved papers

The amino acid substitution N136Y in Candida albicans sterol 14alpha-demethylase is involved in fluconazole resistance.

Medical Mycology 2016 October 2
Resistance to fluconazole antifungal is an ongoing impediment to a successful treatment of Candida albicans infections. One of the most prevalent mechanisms leading to azole resistance is genetic alterations of the 14α-demethylase, the target of azole antifungals, through point mutations. Site-directed mutagenesis and molecular modeling of 14α-demethylase rationalize biological data about the role of protein substitutions in the azole treatment failure. In this work, we investigated the role of N136Y substitution by site-directed mutagenesis into Pichia pastoris guided by structural analysis. Single amino acid substitutions were created by site-directed mutagenesis into P. pastoris with C. albicans ERG11 gene as template. In vitro susceptibility of P. pastoris transformants expressing wild-type and mutants to azole compounds was determined by CLSI M27-A2 and spot agar methods. The fluconazole effect on ergosterol biosynthesis was analyzed by gas chromatography-mass spectrometry. By microdilution and spot tests, N136Y transformants showed a reduced in vitro susceptibility to fluconazole compared to wild-type controls. As expected, ergosterol/lanosterol ratios were higher in N136Y transformants compared to the wild-type controls after treatment with fluconazole. Molecular modeling suggests that residue Asn136 located within the first mutation hot spot, could play a role during heme and azole binding. These results provide new insights into the structural basis for 14α-demethylase-azole interaction and could guide the design of novel azole antifungals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app