Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Calix[8]arene functionalized single-walled carbon nanohorns for dual-signalling electrochemical sensing of aconitine based on competitive host-guest recognition.

Biosensors & Bioelectronics 2016 September 16
A dual-signalling electrochemical approach has been developed towards aconitine based on competitive host-guest interaction by selecting methylene blue (MB) and p-sulfonated calix[8]arene functionalized single-walled carbon nanohorns (SCX8-SWCNHs) as the "reporter pair". Upon the presence of aconitine to the performed SCX8-SWCNHs·MB complex, the MB molecules are displaced by aconitine. This results in a decreased oxidation peak current of MB and the appearance of an oxidation peak of aconitine, and the changes of these signals correlate linearly with the concentration of aconitine. A linear response range of 1.00-10.00μM for aconitine with a low detection limit of 0.18μM (S/N=3) was obtained by using the proposed method. This method could be successfully utilized to detect aconitine in serum samples. This dual-signalling sensor can provide more sensitive target recognition and will have important applications in the sensitive and selective electrochemical detection of aconitine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app