Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Targeting BNIP3 in inflammation-mediated heart failure: a novel concept in heart failure therapy.

Heart Failure Reviews 2016 September
Myocardial injury activates inflammatory mediators and provokes the integration of BCL-2/adenovirus E1B 19KD interacting protein 3 (BNIP3) into mitochondrial membranes. Translocation of BNIP3 to mitochondria inexorably causes mitochondrial fragmentation. Heart failure (HF) epitomizes the life-threatening phase of BNIP3-induced mitochondrial dysfunction and cardiomyocyte death. Available data suggest that inflammatory mediators play a key role in cardiac cell demise and have been implicated in the pathogenesis of HF syndrome. In the present study, we reviewed the changes in BNIP3 protein expression levels during inflammatory response and postulated its role in inflammation-mediated HF. We also identified inflammatory mediators' response such as stimulation of TNF-α and NO as potent inducer of BNIP3. Previous studies suggest that the pro-apoptotic protein has a common regulator with IL-1β and induces IL-6-stimulated cardiac hypertrophy. These findings corroborate our contention that interventions designed to functionally modulate BNIP3 activity during inflammatory-mediated HF may prove beneficial in preventing HF. Such a revelation will open new avenue for further research to unravel a novel therapeutic strategy in HF diseases. Moreover, understanding of the relationship between BNIP3 and inflammatory mediators in HF pathologies will not only contribute to the discovery of drugs that can inhibit inflammation-mediated heart diseases, but also enhance the current knowledge on the key role BNIP3 plays during inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app