Add like
Add dislike
Add to saved papers

Adaptation Behavior of Skilled Infant Bouncers: Leg Movements and Mechanisms of Control.

Motor Control 2017 January
Rhythmic behavior in nonlinear systems can be described as limit cycles or attractors. System perturbations may result in shifts between multiple attractors. We investigated individual cycle-to-cycle leg movement kinematics of three prewalking skilled infant bouncers (10.6 ±0.91 months) during four different spring frequencies (0.9, 1.15, 1.27 and 1.56 Hz). A novel visual analysis phase-plane methodology was introduced to analyze the lower body joint kinematics. It was found that as infants' bounce frequency increased to match the natural frequency of the system, their joint ranges of motion decreased and lower extremity dynamics shifted from forced to simple harmonic motion. All infants produced highly synchronized and coordinated movements, as supported by moderate to high inter- and intralimb correlations. This study extends from previous work (Habib Perez et al., 2015) by focusing on the lower extremity kinematic movements, joint coordination and the occurrence of different movement patterns for individual bounce cycles over four spring conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app