Add like
Add dislike
Add to saved papers

Establishment and adipocyte differentiation of polycystic ovary syndrome-derived induced pluripotent stem cells.

OBJECTIVE: To establish a new biological cell model and approach to mimic abnormal lipid metabolism of polycystic ovary syndrome (PCOS) in vitro.

MATERIALS AND METHODS: Epithelial cells from PCOS patients were reprogrammed to pluripotency by retroviral transduction using defined factors. Morphology, growth characteristics, karyotype, gene expression and differentiation in vitro and in vivo were detected by identification protocol of human embryonic stem cells (ESCs). PCOS-induced pluripotent stem cells (iPSCs) were then induced to differentiate into adipocytes. Ability of the adipocytes for glucose consumption was compared with those from non-PCOS-iPSCs.

RESULTS: iPSCs were successfully generated from PCOS patients' adult cells. Formed iPSC clones had the same characteristics of human ESCs. PCOS-iPSCs were induced to differentiation into normal karyotype adipocytes. Compared to non-PCOS-iPSCs, PCOS-iPSCs had more glucose consumption ability during adipocyte differentiation and development in vitro.

CONCLUSIONS: This protocol provides a new biological cell model and approach for studying pathogenesis of PCOS and discovering potential drugs to treat it.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app