Add like
Add dislike
Add to saved papers

Preclinical in vivo application of (152)Tb-DOTANOC: a radiolanthanide for PET imaging.

EJNMMI Research 2016 December
BACKGROUND: Terbium has attracted the attention of researchers and physicians due to the existence of four medically interesting radionuclides, potentially useful for SPECT and PET imaging, as well as for α- and β(-)-radionuclide therapy. The aim of this study was to produce (152)Tb (T 1/2 = 17.5 h, Eβ+av = 1140 keV) and evaluate it in a preclinical setting in order to demonstrate its potential for PET imaging. For this purpose, DOTANOC was used for targeting the somatostatin receptor in AR42J tumor-bearing mice.

METHODS: (152)Tb was produced by proton-induced spallation of tantalum targets, followed by an online isotope separation process at ISOLDE/CERN. After separation of (152)Tb using cation exchange chromatography, it was directly employed for radiolabeling of DOTANOC. PET/CT scans were performed with AR42J tumor-bearing mice at different time points after injection of (152)Tb-DOTANOC which was applied at variable molar peptide amounts. (177)Lu-DOTANOC was prepared and used in biodistribution and SPECT/CT imaging studies for comparison with the PET results.

RESULTS: After purification, (152)Tb was obtained at activities up to ~600 MBq. Radiolabeling of DOTANOC was achieved at a specific activity of 10 MBq/nmol with a radiochemical purity >98 %. The PET/CT scans of mice allowed visualization of AR42J tumor xenografts and the kidneys, in which the radiopeptide was accumulated. After injection of large peptide amounts, the tumor uptake was reduced as compared to the result after injection of small peptide amounts. PET images of mice, which received (152)Tb-DOTANOC at small peptide amounts, revealed the best tumor-to-kidney ratios. The data obtained with (177)Lu-DOTANOC in biodistribution and SPECT/CT imaging studies confirmed the (152)Tb-based PET results.

CONCLUSIONS: Production of 30-fold higher quantities of (152)Tb as compared to the previously performed pilot study was feasible. This allowed, for the first time, labeling of a peptide at a reasonable specific activity and subsequent application for in vivo PET imaging. As a β(+)-particle-emitting radiolanthanide, (152)Tb would be of distinct value for clinical application, as it may allow exact prediction of the tissue distribution of therapeutic radiolanthanides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app