Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential proteome and phosphoproteome may impact cell signaling in the corpus callosum of schizophrenia patients.

Schizophrenia is a multifactorial disease in both clinical and molecular terms. Thus, depicting the molecular aspects of the disease will contribute to the understanding of its biochemical mechanisms and consequently may lead to the development of new treatment strategies. The protein phosphorylation/dephosphorylation switch acts as the main mechanism for regulating cellular signaling. Moreover, approximately onethird of human proteins are phosphorylable. Thus, identifying proteins differentially phosphorylated in schizophrenia postmortem brains may improve our understanding of the molecular basis of brain function in this disease. Hence, we quantified the phosphoproteome of corpus callosum samples collected post mortem from schizophrenia patients and healthy controls. We used state-of-the-art, bottom-up shotgun mass spectrometry in a two-dimensional liquid chromatography-tandem mass spectrometry setup in the MSE mode with label-free quantification. We identified 60,634 peptides, belonging to 3283 proteins. Of these, 68 proteins were differentially phosphorylated, and 56 were differentially expressed. These proteins are mostly involved in signaling pathways, such as ephrin B and ciliary neurotrophic factor signaling. The data presented here are novel because this was the very first phosphoproteome analysis of schizophrenia brains. They support the important role of glial cells, especially astrocytes, in schizophrenia and help to further the understanding of the molecular aspects of this disease. Our findings indicate a need for further studies on cell signaling, which might shape the development of treatment strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app