Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Effects of tibialis anterior vibration on postural control when exposed to support surface translations.

The sensory re-weighting theory suggests unreliable inputs may be down-weighted to favor more reliable sensory information and thus maintain proper postural control. This study investigated the effects of tibialis anterior (TA) vibration on center of pressure (COP) motion in healthy individuals exposed to support surface translations to further explore the concept of sensory re-weighting. Twenty healthy young adults stood with eyes closed and arms across their chest while exposed to randomized blocks of five trials. Each trial lasted 8 s, with TA vibration either on or off. After 2 s, a sudden backward or forward translation occurred. Anterior-posterior (A/P) COP data were evaluated during the preparatory (first 2 s), perturbation (next 3 s), and recovery (last 3 s) phases to assess the effect of vibration on perturbation response features. The knowledge of an impending perturbation resulted in reduced anterior COP motion with TA vibration in the preparatory phase relative to the magnitude of anterior motion typically observed during TA vibration. During the perturbation phase, vibration did not influence COP motion. However, during the recovery phase vibration induced greater anterior COP motion than during trials without vibration. The fact that TA vibration produced differing effects on COP motion depending upon the phase of the perturbation response may suggest that the immediate context during which postural control is being regulated affects A/P COP responses to TA vibration. This indicates that proprioceptive information is likely continuously re-weighted according to the context in order to maintain effective postural control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app