Add like
Add dislike
Add to saved papers

Establishment and characterisation of a novel bovine SV40 large T-antigen-transduced foetal hepatocyte-derived cell line.

Due to lack of in vitro models for bovine hepatocytes apart from primary cells, there is demand for a bovine hepatocyte-derived cell line. Transduction of bovine foetal hepatocytes with SV40 large T-antigen was performed using the vector pRetro-E2 SV40. Phase contrast microscopy was carried out to evaluate morphology. Immunofluorescence staining was conducted to study expression of keratins, tight junction proteins zona occludens-1 and claudin-1, glucose transporter-2 and P-glycoprotein as well as phosphoenolpyruvate carboxykinase. Urea and triglyceride production was quantified photometrically. Histochemical staining of glycogen by Periodic acid-Schiff stain and of lipids with Oil red O was performed after 24 h incubation with 20 mM glucose and 85 μM palmitic acid, respectively. Gene expression analysis of hepatocyte-typical genes was conducted by reverse transcription PCR. We obtained a SV40LTAg-transduced extended passage cell line, referred to as BFH12. Polygonal growth, keratins, tight junction proteins zona occludens-1 and claudin-1 and glucose transporter-2 as well as P-glycoprotein and phosphoenolpyruvate carboxykinase were attested positively. Urea production calculated as cell-specific rate was 14.2 ± 2.0 fmol/h (early passage) and 17.6 ± 3.7 fmol/h (late passage). Cell-specific triglyceride production was 1.6 ± 0.5 fmol/h (early passage) and 2.1 ± 0.3 fmol/h (late passage). Additionally, cells were positive for glycogen and lipid storage and showed a gene expression pattern resembling foetal hepatocytes. With the properties described here, the novel cell line BFH12 is a hepatocyte-derived cell line which can be used as an in vitro whole cell model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app