Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Matriptase Complexes and Prostasin Complexes with HAI-1 and HAI-2 in Human Milk: Significant Proteolysis in Lactation.

Significant proteolysis may occur during milk synthesis and secretion, as evidenced by the presence of protease-protease inhibitor complex containing the activated form of the type 2 transmembrane serine protease matriptase and the transmembrane Kunitz-type serine protease inhibitor HAI-1. In order to identify other proteolysis events that may occur during lactation, human milk was analyzed for species containing HAI-1 and HAI-2 which is closely related to HAI-1. In addition to the previously demonstrated matriptase-HAI-1 complex, HAI-1 was also detected in complex with prostasin, a glycosylphosphatidylinositol (GPI)-anchored serine protease. HAI-2 was also detected in complexes, the majority of which appear to be part of higher-order complexes, which do not bind to ionic exchange columns or immunoaffinity columns, suggesting that HAI-2 and its target proteases may be incorporated into special protein structures during lactation. The small proportion HAI-2 species that could be purified contain matriptase or prostasin. Human mammary epithelial cells are the likely cellular sources for these HAI-1 and HAI-2 complexes with matriptase and prostasin given that these protease-inhibitor complexes with the exception of prostasin-HAI-2 complex were detected in milk-derived mammary epithelial cells. The presence of these protease-inhibitor complexes in human milk provides in vivo evidence that the proteolytic activity of matriptase and prostasin are significantly elevated at least during lactation, and possibly contribute to the process of lactation, and that they are under tight control by HAI-1 and HAI-2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app