Add like
Add dislike
Add to saved papers

Gene expression, oocyte nuclear maturation and developmental competence of bovine oocytes and embryos produced after in vivo and in vitro heat shock.

Three assays were performed. In assay 1, oocytes harvested during the winter months were subjected to kinetic heat shock by stressing the oocytes at 39.5°C (HS1) or at 40.5°C (HS2) for either 6, 12, 18 or 24 h and then matured at control temperature (38.5°C). The nuclear maturation rates (NMR) of all oocytes were recorded after 24 h. In assay 2, oocytes collected year-round maturated, were implanted via in vitro fertilization (IVF) and developed for 9 days. Gene expression analysis was performed on target genes (Cx43, CDH1, DNMT1, HSPA14) with reference to the two housekeeping genes (GAPDH and SDHA) in embryos. Similarly, in assay 3, genetic analysis was performed on the embryos produced from heat-stressed oocytes (from HS1 and HS2). In assay 1, the duration of heat stress resulted in a significant decline in NMR (P < 0.05) with HS1 for maturated oocytes at 86.4 ± 4.3; 65.5 ± 0.7; 51.3 ± 0.9; 38.1 ± 1.9 and 36.3 ± 0.9, for control, 6 h, 12 h, 18 h and 24 h, respectively. For assays 2 and 3, results demonstrated that DNMT1, Cx43 and HSPA14 were down-regulated in the embryos produced in the warm with respect to the cold months (P < 0.05). A constant up- and down-regulation of DNMT1 and HSPA14 genes were observed in both HS-treated samples. Also, an inconsistent pattern of gene expression was observed in Cx43 and CDH1 genes (P < 0.05). Targeted gene expression was aberrant in embryo development, which can provide evidence on early embryo arrest and slowed embryo development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app