Add like
Add dislike
Add to saved papers

Mercury and antimony in wastewater: fate and treatment.

It is important to understand the fate of Hg and Sb within the wastewater treatment process so as to examine potential treatment options and to ensure compliance with regulatory standards. The fate of Hg and Sb was investigated for an activated sludge process treatment works in the UK. Relatively high crude values (Hg 0.092 μg/L, Sb 1.73 μg/L) were observed at the works, whilst low removal rates within the primary (Hg 52.2 %, Sb 16.3 %) and secondary treatment stages (Hg 29.5 %, Sb -28.9 %) resulted in final effluent concentrations of 0.031 μg/L for Hg and 2.04 μg/L for Sb. Removal of Hg was positively correlated with suspended solids (SS) and chemical oxygen demand (COD) removal, whilst Sb was negatively correlated. Elevated final effluent Sb concentrations compared with crude values were postulated and were suggested to result from Sb present in returned sludge liquors. Kepner Tregoe (KT) analysis was applied to identify suitable treatment technologies. For Hg, chemical techniques (specifically precipitation) were found to be the most suitable whilst for Sb, adsorption (using granulated ferric hydroxide) was deemed most appropriate. Operational solutions, such as lengthening hydraulic retention time, and treatment technologies deployed on sludge liquors were also reviewed but were not feasible for implementation at the works.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app