Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Molecular mechanism linking BDNF/TrkB signaling with the NMDA receptor in memory: the role of Girdin in the CNS.

It is well known that synaptic plasticity is the cellular mechanism underlying learning and memory. Activity-dependent synaptic changes in electrical properties and morphology, including synaptogenesis, lead to alterations of synaptic strength, which is associated with long-term potentiation (LTP). Brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signaling is involved in learning and memory formation by regulating synaptic plasticity. The phosphatidylinositol 3-kinase (PI3-K)/Akt pathway is one of the key signaling cascades downstream BDNF/TrkB and is believed to modulate N-methyl-d-aspartate (NMDA) receptor-mediated synaptic plasticity. However, the molecular mechanism underlying the connection between these two key players in synaptic plasticity remains largely unknown. Girders of actin filament (Girdin), an Akt substrate that directly binds to actin filaments, has been shown to play a role in neuronal migration and neuronal development. Recently, we identified Girdin as a key molecule involved in regulating long-term memory. It was demonstrated that phosphorylation of Girdin by Akt contributed to the maintenance of LTP by linking the BDNF/TrkB signaling pathway with NMDA receptor activity. These findings indicate that Girdin plays a pivotal role in a variety of processes in the CNS. Here, we review recent advances in our understanding about the roles of Girdin in the CNS and focus particularly on neuronal migration and memory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app