Add like
Add dislike
Add to saved papers

Determine the Dose Distribution Using Ultrasound Parameters in MAGIC-f Polymer Gels.

In this study, using methacrylic and ascorbic acid in gelatin initiated by copper (MAGIC-f) polymer gel after megavoltage energy exposure, the sensitivity of the ultrasound velocity and attenuation coefficient dose-dependent parameters was evaluated. The MAGIC-f polymer gel was irradiated under 1.25 MeV cobalt-60, ranging from 0 to 60 Gy in 2-Gy steps, and received dose uniformity and accuracy of ±2%. After calibration of the ultrasonic systems with a frequency of 500 kHz, the parameters of ultrasound velocity and attenuation coefficient of the irradiated gel samples were measured. According to the dose-response curve, the ability of ultrasonic parameters was evaluated in dose rate readings. Based on a 4-order polynomial curve, fitted on the dose-response parameters of ultrasound velocity and attenuation coefficient and observed at 24 hours after irradiation, ultrasonic parameters had more sensitivity. The sensitivity of the dose-velocity and dose-attenuation coefficient curves was observed as 50 m/s/Gy and 0.06 dB/MHz/Gy over the linear range of 4 to 44 Gy, respectively. The ultrasonic parameters at 5°C, 15°C, and 25°C on the gel dosimeter after 0 to 60 Gy irradiation showed that readings at 25°C have higher sensitivity compared to 15°C and 5°C. Maximum sensitivity time and temperature readings of the MAGIC-f ultrasonic parameters were concluded 24 hours after irradiation and at a temperature of 25°C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app