Add like
Add dislike
Add to saved papers

In vivo evaluation of [ 11 C]preladenant positron emission tomography for quantification of adenosine A 2A receptors in the rat brain.

[11 C]Preladenant was developed as a novel adenosine A2A receptor positron emission tomography radioligand. The present study aims to evaluate the suitability of [11 C]preladenant positron emission tomography for the quantification of striatal A2A receptor density and the assessment of striatal A2A receptor occupancy by KW-6002. Sixty- or ninety-minute dynamic positron emission tomography imaging was performed on rats. Tracer kinetics was quantified by the two-tissue compartment model, Logan graphical analysis and several reference tissue-based models. Test-retest reproducibility was assessed by repeated imaging on two consecutive days. Two-tissue compartment model and Logan plot estimated comparable distribution volume ( VT ) values of ∼10 in the A2A receptor-rich striatum and substantially lower values in all extra-striatal regions (∼1.5-2.5). The simplified reference tissue model with midbrain or occipital cortex as the reference region proved to be the best non-invasive model for quantification of A2A receptor, showing a striatal binding potential ( BPND ) value of ∼5.5, and a test-retest variability of ∼5.5%. The brain metabolite analysis showed that at 60-min post injection, 17% of the radioactivity in the brain was due to radioactive metabolites. The ED50 of KW-6002 in rat striatum for i.p. injection was 0.044-0.062 mg/kg. The study demonstrates that [11 C]preladenant is a suitable tracer to quantify striatal A2A receptor density and assess A2A receptor occupancy by A2A receptor-targeting molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app