Add like
Add dislike
Add to saved papers

Transcription Profiling of NOD-like Receptors in the Human Cornea with Disease.

PURPOSE: To investigate the expression of nucleotide-binding oligomerization domain-like receptors (NLRs) in human corneas with disease and corneal cells.

METHODS: The expression of NOD1, NOD2, NLRP1, and NLRP3 was analyzed using real-time RT-PCR in (1) corneas with active infection, history of herpetic stromal keratitis (HSK), chronic allograft rejection, and limbal stem cell deficiency (LSCD), and (2) human corneal cells after lipopolysaccharide (LPS) stimulation. Healthy corneas and cells without LPS served as controls.

RESULTS: The mRNA levels of NOD2 and NLRP3 were increased in corneas with infection and HSK. Conversely, the levels of NOD1, NOD2, NLRP1, and NLRP3 transcripts were decreased in corneas with LSCD. In corneas with rejection, the expression of NOD1 and NLRP1 was downregulated. Corneal endothelial cells upregulated the expression of NOD2 and NLRP3 upon LPS.

CONCLUSIONS: The changes in the NLR expression may reflect different susceptibility to infectious and non-infectious injuries in corneas with various diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app